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A SIMPLE SOFTWARE ENVIRONMENT

BASED ON OBJECTS AND RELATIONS

Bruce J. MacLennan

Computer Science Department

Naval Postgraduate School

Monterey, CA 93943

1. Abstract

This paper presents a simple programming system based on a clear separation of value- oriented program-

ming and object- oriented programming [MacLennan82, MacLennan83aj . The value-oriented component

is a conventional functional programming language. The object-oriented component is based on a

model of objects and values connected by relations, and on production system-like rules that determine

the alteration of these relations through time. It is shown that these few basic ideas permit simple pro-

totyping of a software development environment.

2. Introduction

2.1 Goals

Our goal has been to design a programming system that combines in one system the best features of

value-oriented programming and object-oriented programming. The following two sections discuss

these two programming paradigms and their advantages and disadvantages. This is followed by a

description of a paradigm that attempts to combine the best features of both. A programming system

based on and supporting this paradigm is then discussed. The system is illustrated by several applica-

tions to components of programming environments.

2.2 Value-Oriented Programming

There are a number of possible definitions of value- oriented programming
j
MacLennan82, McGraw82,

MacLennan83a] . It is most accurately considered programming without the use of explicit state

changes. Since the assignment operation is the major programming language construct for effecting

state changes, value-oriented programming has also been characterized as assignment- less programming.
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Also, since variables are the things that assignment operations change, and are the media in which the

state is represented, value-oriented programming has also been characterized as variable-less program-

ming. There are a number of species of value-oriented programming, including applicative program-

ming 'Landin64, Landin66, Burge75i, functional programming Backus78. Henderson80, MacLen-

nan86j, equational programming iHonrman84
J

, logic programming Kowalski79j and relational program-

ming [MacLennan81, MacLennan83b]

.

Variables and the assignments to them are some of the most common elements of programs in con-

ventional languages. Why would one want to eliminate them? The advantages of value-oriented pro-

gramming include ease of program derivation, ability for algebraic manipulation, ease of proof of pro-

perties, ease of analysis, evaluation order independence, and very-high-level operations. Examples of

value-oriented programming languages include "pure LISP," PROLOG, KRC and Backus's FP.

Value-oriented programming is not without disadvantages. These result directly from the absence of

state changes, since this means it is hard to deal with temporal change. Thus, it is difficult to program

those applications for which temporal change is an essential element. Examples of these applications

include databases, graphics, realtime programs, interactive systems and operating systems. Many of the

components of programming environments fall into the above categories, such as editors, version con-

trol systems, debuggers, documentation management systems, configuration management systems, etc.

2.5 Object-Oriented Programming

There have been many definitions of object- oriented programming !Lomet76, Lomet80, Robson8l,

Rentsch82, MacLennan82, MacLennan83al . One view, perhaps the most common, is that the essence

of object-oriented programming is data abstraction and information hiding. This seems to be the view,

for example, in [Buzzard85]. We prefer to call such languages data abstraction languages.

This paper takes a different view of object-oriented programming, a view proposed by Alan Kay

Kay77| and others, namely, that the essence of object-oriented programming is simulation. This view

is particularly appropriate to systems that must deal explicitly with the passage of time and the alteration

of objects through time. These systems include interactive systems, graphics systems, operating sys-

tems, file systems, editors, database systems and version control systems. Indeed, all the major
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components of a software development environment fit nicely into the simulation paradigm and the

object-oriented view [Robson81 .

Unfortunately, conventional object-oriented languages, such as Simula jDahl70J and Smalltalk

Goldberg83j. are built upon the framework of a conventional procedural language, which does not take

full advantage of the simulation paradigm.

The approach to object-oriented programming taken in this work directly supports the simulation

paradigm. This can be summarized as follows:

• Computer objects correspond to external objects.

• The behavior of computer objects models the behavior of external objects.

• Objects are classified according to their behavior.

The advantages of object-oriented programming languages result from their being based on the simula-

tion paradigm. In particular, they are well-suited to deal with time and changes of state in time. Thus

they are ideal for dealing with applications for which temporal change is an essential element, such as

programming environments, databases, graphics systems, etc. |Robson8l].

Object-oriented programming also seems to be quite natural, especially for those without a lot of

computer experience [Goldberg77] . This is probably because there is a close correspondence between

thinking about computer objects and real-world objects. In many situations the object-oriented program

is derivable from real-world situation it is intended to model.

The disadvantages of object-oriented programming are the advantages of value-oriented program-

ming: (1) it is difficult to reason about things that change in time; (2) object-oriented languages provide

little ability for algebraic manipulation (although this perhaps could be remedied); and (3) the analysis

of object-oriented programs can be hard.

2.4 A Solution: Dyad

Based on these considerations we are developing a programming paradigm, and a programming system

to support it, that combines the advantages of object-oriented programming and value-oriented pro-

gramming. It is called Dyad to reflect the fact that it is a whole comprising two distinct units:

-3-
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• A (alpha) — An applicative (value-oriented) component

• Q (omega) — An object-oriented component

Thus the Dyad system accommodates both value-oriented programming and object-oriented program-

ming. The goal of this research is to investigate the advantages and disadvantages of programming in a

language, such as Dyad, that clearly separates yet supports both the value- and object-oriented para-

digms.

We will not describe here the applicative language (A), since it is conventional and similar to previ-

ous applicative languages (KRC, SASL, etc.). The object-oriented language (H ) is unconventional,

however, and will be described in some depth in the following section.

3. The Object-Oriented Component: Q

5.1 Structure of Q

In designing the object-oriented component of Dyad, we have attempted to deal directly with the needs

of simulation, and not to include any feature just because it is found in other languages. There are

several results of this fundamental approach. First, H lacks many of the accouterments of conventional

languages, such as variables, assignment statements and most control structures. Second, concurrency

is the norm; as in the real world being simulated, things happen sequentially only if specifically

arranged to do so.

We turn now to the structure of Cl . There are two major issues: The nature of the simulated

universe of objects and their relationships, and the means for describing how this universe evolves in

time; i.e., for describing the behavior of the objects in terms of the relationships. These issues are dis-

cussed in the following two sections.

3.2 Object-Relationship Space

It will be seen that the object-relationship space is similar to several familiar ideas including the

knowledge representation languages (semantic nets) used in expert systems [Findler79], the entity-

relationship approach to databases Chen76], and relational databases [Codd70]. Thinking of these will

simplify understanding the fi space.
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The ft object-relationship space is populated by a number of atomic objects connected by relation-

ships. The only properties an object has are those it gets by virtue of the relationships; this is what we

mean by the objects being atomic. Besides objects being related to objects, objects can also be related to

values by the relationships; this provides the connection between the object-oriented and value-oriented

components of Dyad.

Relationships are usually expressed in a predicate- logic style. For example, if M and T are particu-

lar objects, then a part of the state of a simulation might be expressed by the following relationships:

Missile (M), Moving (M), Position
( [25,60], M),

Target (T), -Destroyed (T), Position ([ 18,32], T)

This can be read, "M is a missile, M is moving, [25,60] is the position of M, J
1

is a target, T is not

destroyed, and [18,32] is the position of 7\"

3.3 Transaction Rules

We have discussed how the state of the simulated universe is expressed as atomic objects connected by

relationships. We now turn to the transaction rules, which are used to describe state changes. These

rules are similar to the production rules used in many AI applications [Newell72]. They are also similar

to logic programming clauses [Kowalski79] (although there is no backtrack) and, most relevantly, to

causal laws.

The relation of the transaction rules to causal laws can be understood by considering the description

of causal relationships in the real world. There are two kinds of causal laws that can be used for this

purpose: entity- oriented laws and event- oriented laws.

In the entity-oriented (or object-oriented) approach the law describes how an object of a given kind

behaves in situations of a given kind. Hence, causal laws of this sort are associated with classes of

objects. Languages such as Smalltalk and Simula are based on this model of causality.

An alternate model of causality, the event-oriented, says that a causal law relates two kinds of

events. Causal laws do this by stating the manner in which events of the first kind cause events of the

second kind. This is the model we have adopted in Q . The event-oriented approach is more general
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than the entity-oriented approach, and in fact subsumes it. The event-oriented approach also permits

the convenient description of causal relationships in which two or more objects participate as equal

partners. Such relationships do not have to be considered properties of any of the objects. This is a

problem in Smalltalk, Simula and similar languages
[

Goldstein80j

.

Thus our goal is to describe causal relationships in terms of two classes of events standing in the

relationship of cause to effect. That is, a causal law tells us how a present situation (set of relationships)

leads to a future situation (set of relationships). Thus a causal law has two parts:

• A cause, which describes a present situation in terms of a set of relationships;

• An effect, which describes a future situation in terms of a set of relationships.

The cause part is just a set of inquiries about tuples in the relationships in the database. For example,

the following cause part tests for a particular situation in the state space:

Missile(m), Moving(m), Position {p , m) , Target(t), --Destroyed( t) , Position (p,() =s> • •
•

This can be read, "//there is a missile m, and m is moving, and some p is the position of m, and there

is a target t, and t is not destroyed, and p is the position of t, then ..."

The effect part is a set of transactions that add tuples to, or delete tuples from, relationships. For

example, the effect part:

• • • =?> ->Moving(m), Destroyed( m) , Destroyed( t).

says that the 'Moving' property is to be removed from m, and that the 'Destroyed' property is to be

added to both m and t.

3.4 Detailed Discussion

Having described the overall structure of Q , we now turn to a more systematic presentation of its facili-

ties. The presentation here will be informal. The formal syntax will be found in Appendix A; the for-

mal (denotational) semantics is presented in [MacLennan83aj

.

The basic construct is the rule, which has the form

cause =s> effect
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The cause describes a possible situation in a space of objects connected by relations. If that situation

holds, then the rule may be applied, which means that the actions described by its effect part will be

performed. Rules are executed indivisibly , which means that it is guaranteed that the situation still holds

when the actions are performed.

There is normally no order implied between rules; they can be tested in any order. However, rules

can be connected by the word else when a particular order must be imposed:

cause j =»» effect^

else cause 2
=> effect^

else causen => effectn

In this case, the second and succeeding rules are tried only when the preceding rules have failed.

The cause part of a rule describes a situation in terms of one or more conditions, which represent the

presence or absence of relationships between objects:

condition^, condition2, . . , conditionn

All of these conditions must be satisfied before a rule can be applied.

A condition for testing for the presence of a tuple in a relationship has the form:

primary
(
pattern^, pattern^,

,
patternn )

The primary is an expression (usually just an identifier) that evaluates to a relation. The following list

of patterns defines a tuple pattern. Each pattern in the list can be either a free (i.e., undefined) variable,

or an expression containing no free (i.e., only bound) variables. An expression is evaluated during the

matching process, and matches a value equal to the result of its evaluation. A free variable will match

any value, but becomes bound to that value during the matching process. The special free variable '— '

can be used to match anything without binding a variable name.

A condition for testing for the absence of a tuple from a relationship has the form:

-^primary
(
pattern

l ,

pattern^,
,
pattern n )

.7.
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This condition succeeds only if there is not a tuple of the specified form in the relation that is the value

of the primary.

FinaUy, as a convenience we permit cancel conditions:

*primary
(
pattem

x ,
pattern^, .... patternn )

This tests for the presence of a tuple of the specified form, just as the first kind of condition, but it has

a side effect of deleting that tuple if the rule is applied. Although, this could be programmed explicitly,

the situation is common enough that it is important to reflect it in the notation.

The effect part of a rule is composed of a sequence of transactions:

transaction j, transaction2, , transactionn

These transactions can be performed in any order or in parallel. However, their execution forms an

indivisible unit.

The transactions are of four kinds: assertions, denials, calls and sequential blocks.

An assertion is a transaction of the form:

primary ( expression-^, expression^, , expreseionn )

Its effect is to add to the relation that is the value of the primary the tuple < V
ly
V2 , . , Vn > , where

each V, is the value of expression,. TypicaUy these expressions contain variables that were bound in the

cause part of the rule.

A denial has the form of an assertion preceded by a negation sign:

^primary ( expression-^, expression-^, , expressionn )

Its effect is to delete the specified tuple from the specified relation. If this relation does not contain this

tuple, then an error condition holds (f2 error handling is beyond the scope of this paper).

A call is a transaction of the form:

primary { expression^, expression^, , expressionn }

Its purpose is a form of synchronous communication performed by sending a message through one rela-
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tion. and waiting for a reply to be returned through another relation. For example, the call

P{E, F}

has the effect of performing the assertion

P[a, E, F)

Here a is a newly generated relation that will be used for receiving the reply. This assertion presum-

ably requests some actions to be performed by other rules (which are watching P) . When the actions

are completed, an acknowledgment or reply will be placed in the a relation, which permits the calling

rule to complete. Note that rules containing calls in their effect parts are not considered indivisible.

The formal definition of calls through their reduction to basic rules is described in
j
MacLenn an83a] .

The last kind of transaction is a sequential block, which has the form:

{ statement^ statement^ ' ' '
', statement,, }

The effect of this construct is to execute the component statements in order. A statement is simply a

rule, simple or compound, with the additional characteristic that its cause part (and the =>
) can be

omitted. This reflects the fact that in a sequential block the performance of actions may be conditioned

solely on the performance of the preceding statements.

A user normally interacts with an Cl system by typing statements. Thus the form of an Q terminal

session is:

statement^,

statement*;

statementn ;

Many of the statements typed interactively are isolated effects containing a single call. For example, to

define 'Contents' to be a new private relation, a user would enter:

Define {Private, "Contents", newrel {} };

Finally, we need a means for manipulating groups of rules as a unit; this is the rule denotation and has

-9-
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the form:

<< compound — rule^. compound - rule?. compound - rule n . >>

Notice that each compound rule is terminated by a period. (A compound rule is simply a rule that may

contain elses.)

3.5 Alternate Notations

We also permit predicates to be written in a pseudo-natural notation that comes quite close to the infor-

mal meaning of the predicates:

If a missile is moving, a target is not destroyed and the position of the missile is the position of a

target

then the missile is not moving, the missile is destroyed and the target is destroyed.

Notice that the notation permits a limited amount of subordination and anaphoric reference. This

pseudo-natural notation is actually very simple to parse; it does not require the use of any sophisticated

natural-language- understanding techniques.

We have also investigated two-dimensional, form-based notations, since they can be easily under-

stood by many people. These alternative syntactic representations are described in
! MacLennan84J ; an

implementation of a pseudo-natural notation is described in [UfTord85J.

4. Naming and Classification

4.1 Naming

Most programming languages have built-in declarative constructs for binding names to their meanings;

there are no such constructs in Cl . Rather, naming is implemented within Cl by the use of objects, rela-

tions and causal laws. We have taken this approach for two reasons. First, in an interactive system

bindings are created and destroyed through time. This temporal change implies that name directories

are objects, and hence that fi is the appropriate vehicle for dealing with them. Second, a loose cou-

pling between the naming strategy and the language permits experimentation with alternative naming

strategies, which is appropriate in a prototype system such as Dyad.

-10-
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The current Dyad naming strategy makes use of objects called directories that bind names (strings)

to values or objects. This is accomplished through two relationships, 'Directory' and 'Binds'. The

meaning of Directory( d ) is that d is a directory: the meaning of Binds( d . n
,
i ) is that directory d binds

name (string) n to object or value x.

Bindings are established by the procedure call:

Define {d , n, x
}

In the simplest case this procedure is implemented by the following rule, which makes the appropriate

entries in Binds:

*Define (a, d, n, x), Directory [d) => Binds (d, n, x), a (n)

(The extra parameter a is used for return from the procedure; see calls in Section 3.4.) In practice it is

desirable to allow the rebinding of already bound names. This is easily accomplished by the compound

rule:

*Define (a, d, n, z), Directory (d), *Binds (d, n, y)

=> Binds (d, n, x), a ( n + " redefined")

else *Define (a, d, n, i), Directory (d) => Binds (d, n, x), a (n + " defined")

The first rule handles the case where n is already bound to some y; this binding is discarded. In either

case the caller a is returned a message indicating that n was (re) defined.

When fi executes a rule (more correctly, when the rule is activated), it must look up the meanings

of all the names that occur in that rule. Although this lookup operation is built into the system, its

effect is the same as executing the procedure call 'Lookup{n , d\ , where d is the "current" directory.

The default implementation of Lookup is:

*Lookup (a, n, d), Directory (d), Binds (d, n, r) => a (x)

That is, we return to the caller a the object i to which the name n is bound by the directory d

.

That the Dyad naming system is defined within U adds considerable flexibility to the system. To

implement a different naming strategy all we need do is change the definitions of Define and Lookup.

-11-
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For example, if we wanted to permit lookup operations to follow a path from directory to directory, we

could do this by defining a new relation Path and by making the appropriate change to Lookup:

*Lookup (a, n, d), -Binds (d, n, x), Path (d, e) =?> Lookup (a, n. e)

else *Lookup (a, n, d), Binds {d, n, x) => a (x)

else *Lookup (a, n, d) => a (Nil).

The first rule detects if the sought name is not bound in the current directory, and forwards the search

to the next in the path. We have also added here a rule to detect unbound names.

4.2 Information Hiding

In a simulation it is often necessary to implement an object in terms of lower level objects. To preserve

the integrity of the simulation it is important to distinguish those objects and relationships that are part

of the simulation (i.e., correspond to objects and relationships in the system being simulated), from

those objects and relationships that are not part of it (i.e., do not correspond). There is also a software

engineering reason for making this distinction, namely, facilitation of the modular decomposition of the

system.

Although both Simula-67 and Smalltalk permit objects to be used in the implementation of other

objects, neither language enforces the boundary between these levels of abstraction. Such enforcement

is a natural extension that has been included in more recent languages (including newer versions of

Simula). It is, I believe, the reason that object-oriented languages are commonly identified with data

abstraction languages and languages supporting information hiding.

It is for these reasons — the support of both simulation integrity and modular decomposition — that

we have included in f) facilities for enforcing levels of abstraction. This enforcement is accomplished

by controlling the kinds of access to the relations permitted to various parties. In particular, rather than

being bound directly to relations, relation names are bound to capabilities [Dennis66] referring to the

relations. Each such capability may bear from zero to three rights, the permitted rights being read, insert

and delete. These rights correspond to the ways in which relations can be used in rules: read for use in

the cause part, insert for use in an assertion in the effect part, and delete for use in a denial in the effect

-12-
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part.

An example will illustrate how capabilities can be used to enforce information hiding and levels of

abstraction. Suppose that we intend to implement a system service such as an editor. It is intended

that users be able to invoke this service by a procedure call such as 'Exit{X}', where X is the object to

be edited. This procedure call is equivalent to the assertion
i F,dit(A,X)\ where A is a relation-

surrogate for the agent performing the call. It can be seen that the call entails placing the tuple

< A,X> in the Edit relation, which can be thought of as putting the message < A,X> in the Edit

mailbox.

Now, this usage pattern has several consequences. First, users of services must have insert rights to

the relations used for requesting these services. Second, users of services should not have delete rights

for these relations, since that would permit them to delete other users' requests (postal patrons can't

take mail out of public mail-boxes). Further, users should not have read rights, since that would per-

mit them to discover the requests made by other users.

Thus it can be seen that the user of such a service-request relation should have insert-only rights to

that relation. On the other hand, the implementor of the service must have full rights to the relation,

otherwise it will be unable to read and delete the requests as they are serviced.

Arrangements such as these are easily accomplished by means of the directory structure previously

described. For example, suppose that we have two directories: 'Public' contains all the names gen-

erally available to users, and 'EditDir' contains all of the (public and private) objects and relations

needed to implement the editor. The private version of the request relation is created and named by:

Define {EditDir, "Requests", newrel{}}

The system procedure 'newreP creates a new relation and returns a capability for that relation that bears

full rights. Within the implementor's directory (EditDir) this capability will be known as 'Requests'.

To make the request relation available to potential users, we must give it a name in a publicly acces-

sible directory. Since potential users should have insert-only rights to this relation the public name

'Edit' is bound to an insert-only capability for Requests. This is accomplished by executing the follow-

13-



www.manaraa.com

ing call with EditDir as the current directory:

Define {Public, "Edit", insertonly {Requests}}

The system procedure 'insertonly' is used to produce the reduced-rights capability that is made publicly

available.

The basic approach illustrated above can be extended to more complicated directory structures and

more complicated sharing and access policies.

4.3 Hierarchical and Nanhierarchical Classification

Classification and simulation go hand in hand. It is no coincidence that a class construct appeared in

Simula 67, a simulation language, long before it appeared, or its value was recognized, in other

languages. The reason is simple: in a simulation of any complexity it is infeasible to describe the

behavior of every individual object. Rather, it is necessary to group objects into classes of similarly-

behaving individuals, so that their common behavior can be described just once. At root this is the

same reason we seek scientific laws.

We have already shown how Q supports a simple (one level) classification system. A rule such as

*Define (a, d , n, z), Directory (d) => Binds (d, n, z), a (z)

is part of the description of the behavior of Directory objects.

The integrity of Directories as abstract objects can be ensured by making the following rights pub-

licly available:

Define — insert-only

Directory — read-only

Binds — no rights

'Define' has insertonly rights because it is used for requesting services; 'Directory' has read-only rights

because it is used as the tag for Directory objects; and 'Binds' has no publicly accessible rights because

it is part of the internal structure (implementation) of Directories.

In more complex systems it is economical to factor common behavior out of several classes of
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objects; that is, to treat several classes as species under a common genus. To support this hierarchical

classification Simula and Smalltalk permit classes to be subclasses of other classes. In Cl the same result

can be achieved by the Path structure previously described. In effect, directories correspond to the

classes whose behavior they encapsulate.

Other researchers have described the limitations of a purely hierarchical classification system [Gold-

stein80] . In these situations it is convenient for a class to be able to have more than one immediate

superclass. Nonhierarchical classification can be handled in f2 by arranging for the Path to thread in

the desired order through the directories corresponding to the superclasses.

It is our goal that the flexibility of Dyad's naming and capability system will encourage experimenta-

tion with nonhierarchical and other classification policies.

5. Applications

To aid investigation and evaluation of this kind of object-oriented programming we have developed a

prototype implementation of a programming environment for a simple applicative language. This

implementation is described in detail in [MacLennan85] . The following table shows the number of

rules required for programming several major components of the system:

n Rules Component

22 Parallel Interpreter

9 Pretty Printer

16 Code Generator

14 Debugger

24 Language-Specific SDE

37 Universal SDE

122 TOTAL

To convey some idea of the complexity of actual rules we show two rules from this programming

environment. The first rule is from a parallel expression evaluator. In the pseudo-natural notation it

-15-
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is:

If a function is the meaning of the operator of an application, given value-1 is the value of the left

argument of the application, and given value-2 is the value of the right argument of the application

then the function of value-1 and value-2 is the value of the application.

In the predicate notation it is:

Appl(£), Op{N,E). Leh(X,E), Right( Y,E) , Meaning(F,iV), "Value ( ^ , X) , *Value( V, Y)

=> Value (F\U,V\, E)

.

Appendix B includes the complete fi definition of a combined parallel evaluator/un parser for an arith-

metic expression language. These rules are in the dialect of £7 accepted by the McArthur interpreter

[McArthur84].

A language-independent syntax-directed editor is used as another component of the example system.

For example, the following rule moves the cursor to the leftmost daughter of the current node:

*Command(in), *Cursor( n,/), Subnode( n,f ,m) , Type(m,t), LeftField( t,g)

=s> Cursor( rn,g).

The second example is a rule from a different universal (i.e., table driven) syntax-directed editor:

*Command(in), CurrentNode(£), Type( V,E),

AssumedTemplate( T, V) , FirstSelector( R , T) ,

Component(A\i? ,E)

=t> SetCurrentNode( X) , Com m an d( display) .

The syntax-directed editor is explained in detail in
[
MacLennan85l . This report also discusses the

application of similar techniques to the interactive creation and modification of other data structures

represented by relations.

For another example we consider a simple version of Reed's file system [Reed78j. The following

rules allow a value to be read, effective at any time, and record the time of the latest read:
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*Read(/i,r), Value(r,7\x), LastRead(r,f), TSJ t -» A(z).

*Read(yl,r), Value(r,T,i), "LastRead(r,t), T> t _» LastRead(r , T) , A {x ).

The following rules allow an update of a value effective at a given time, but only if that time is later

than the time of the last read:

*Update(r, T,y). LastRead( r, *) , T> t => Value( r, T, y )

.

*Update(r,r,y), LastRead(r,t), T^ t =s» AbortUpdate( T)

.

Since the users are considered objects in the system, they can interact with the system by performing

searches, inserts and deletes on relations for which they have the appropriate capabilities |Dennis66].

6. Implementation

6.1 Declarations and Second Order Relationships

We are investigating several techniques to keep the implementation of the Dyad system acceptably

efficient. These involve both the more efficient representation of relations, and more efficient determi-

nation of the rules eligible for application.

Both goals are accomplished by giving users the ability to put declarative information about relation-

ships into the object-relationship space. These second order relationships have a role similar to declara-

tions in conventional languages, that is, they can be used for documentation, error checking and

improved performance. Unlike declarations in most other languages, they are completely optional. The

philosophy is that if programmers have information about the relationships that they think it would be

useful to tell the system or other users, then they can do so. However, there is no obligation for them

to provide this information or for the system or other users to make use of it.

We give a few examples of these second order relationships. It is frequently useful to know the adi-

city of a relationship and the types of values and objects it can relate. This information can be made

available in the 'Degree' and 'Domain' relationships. For example, 'Degreef/? ,n
)

' means that the

degree of R is n, that is, all the tuples in R are n-tuples. Similarly, 'Domain(P,fc ,R )
' means that

domain k (i.e., the k th argument position) of relationship R is P, where P either is a type

-17-
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membership predicate (Boolean valued total function), or is degree 1 relationship (finite predicate).

Another useful second order relationship is 'Indexed': 'Indexed( R ,k )
' means that R is indexed on

its it th argument, that is, the values of the k th argument must be unique. Knowing that a relationship

is indexed permits the testing of the cause parts of rules to be done much more efficiently. To see an

example of an indexed relationship, consider the following four assertions:

Degree (Op, 2)

Domain (string, 1, Op)

Domain (Appl, 2, Op)

Indexed (Op, 2)

These tell us that relationship 'Op' has two columns, the first of which holds strings and the second of

which holds members of the relationship called 'Appl'. Furthermore, Op is indexed on its second

column. Thus, if n is an object such that Appl(n) is true, then there is at most one string s such that

Op(«,n). In effect Op is a finite partial function, or table, mapping Appl objects to strings.

Relationships representing finite partial functions (tables) are so common that a special abbreviation

is provided for them. The assertion 'Function( F,D,R
)

' is equivalent to the four assertions

Degree (F,2)

Domain (R, 1,F)

Domain [D , 2,F)

Indexed {F,2)

Thus, the previous assertion about Op can be expressed 'Function (Op, Appl, string)', which means

that Op is a (finite, alterable) function from Appl objects into strings.

It is our intention to improve performance by allowing various representations for relationships

(e.g., linked lists, hash tables, relational databases). Second order relationships allow the programmer

to give the system suggestions about the representation to use. For example, 'Repr (Op, hash)' sug-

gests that a hash table be used to represent Op.

-18-
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6.2 Prototype Implementations

Several prototype implementations of Dyad have been completed The first prototype was implemented

in LISP. This prototype supported only one representation of relationships: lists of tuples.

The second prototype was also implemented in LISP, but supports multiple representations of rela-

tions to improve performance. This prototype interpreter accepts rules in a tree form that can be gen-

erated either by a parser written in LISP, or by a syntax-directed editor. The table-driven syntax-

directed editor in this case is especially interesting because it is written as fi rules operating on a trans-

lation grammar expressed in the fi object-relationship space. Thus we have successfully involuted the

system, having fi programs generate fi programs. The table-driven syntax-directed editor is described

in [MacLennan85]

.

The third prototype is intended for increased performance. The interpreter is coded in C and pro-

vides access to the UNIX shell for various utility and convenience functions. An interpreter for the

applicative language (A component) also has been completed. The third prototype, like the second,

operates on rules in a tree form that can be generated either by a universal syntax- directed editor or by

a conventional parser. In this case, however, the editor has been programmed in Pascal and the parser

generated by YACC. A complete description of the third prototype can be found in [McArthur84] ; it is

the system on which the example in Appendix Bruns.

6.3 Status

The two languages (A and fi ) are stable, but subject to revision based on experience. The Dyad sys-

tem is being evaluated by being used to describe and prototype a variety of applications. Several of

these, including preliminary performance measurements, are described in [McArthur84J . This

approach is giving us experience in programming realistic problems. We are also experimenting with

changes to fi to increase its knowledge representation capabilities.

Alternate notations and visual representations for rules are being evaluated. For example, we are

investigating a two-dimensional form based notation that allows transactions to be visualized as the

arrival and distribution of forms. This might be useful in office automation applications.
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APPENDIX A: SYNTAX OF n

Session — statement — list .

statement — list = statement

statement
rule else statement

I cause =s>
\

effect

compound — rule - rule
\
else statement

rule - cause => effect

cause = [if] condition ,
• •

condition = tnguiry

inquiry = primary ( tupl — pattern
)

(pattern ,
• •

(^

pattern : pattern}

pattern =
/ree-t;aria6/e|

expression
J

free- variable =
variable}

transaction

effect = \ transaction ,
• •

•

/ \

assertion

denial

call

seq — block

\ )

assertion = predication

denial — -1 predication

predication = primary ( arguments
)

ca// = primary { arguments }

arguments =
[
expression ,

'
' '

}

seq — block = { statement — list }

expression =
[ expression V] conjunction

conjunction =
\ conjunction f\] [

-i] relation



www.manaraa.com

relation = [simplex relator] simplex

relator = {=|^|<|>|^|^}

simplex = [simplex {+j — }] term

term = [term {*]/]%}] factor

factor - primary

primary = primitive : primary]

primitive —

constant

[@ ]
variable

primitive
[
arguments

]

( expression
)

J
expression ,

•

' 1 expression : expressiot

call

rule —denotation

constant =

digit
+

j chat

nil

rule — denotation = << { compound — rule . } >>
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APPENDIX B: INTERPRETER /UNPARSER FOR SMALL LANGUAGE

! Rules and associated definitions for a universal

! interpreter/ un parser for a small language of

! arithmetic expressions.

! Relations

define root,

define root,

define root,

define root,

define root,

define - root,

define root,

define root,

define < root,

define - root,

define < root,

define < root,

define root,

"Eval", newrel{}};

"Check", newrel{}};

"Value", newrelQ};

"Appl", newrel(}};

"Op", newrel{}};

"Left", newrelQ};

"Right", newrel{}};

"Con", newrelj}};

"Litval", newrelQ};

"Meaning", newrel{}};

"Template", newrel{}};

"Explanation", newrel{}};

"CurrentNode", newrel{}};

! Functions

fn Id [x] : x;

fn Sum [x,y] : x -t- y;

fn Dif [x,y]: x - y;

fn Product [x,y]: x *
y;

.oi;-
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fn Quotient !x,y]

:

if y = -> I "error", lj

else x / y;

fn IsErrorcode [w]:

if TsListjw]
|

w = Nil -> Nil

else first [w] = "error";

fn upSum [x,yj: "(" + x- " + " + y + ")
";

fn upDif [x,y]: "(" + x+ "-" + y + ")
";

fn upProd [x,yj: "(" + x + "x"^ y^ ")
";

fn upQuot [x,y]: "(" + x+ "/"+ y+ ")".

! Built-in Tables

Meaning (Sum, "+");

Meaning (Dif, "-");

Meaning (Product, "x");

Meaning (Quotient, "/")

;

Meaning (Id, "lit");

Template (upSum, "+ ")

;

Template (upDif, "-");

Template (upProd, "x");

Template (upQuot, "/");

Template (int_str, 'lit");

Explanation ("incomplete program", ['trror", 0]);

Explanation ("division by zero", ["error", l));

-26-
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! the Rules

define {root. "EvalUnparseRules". < <

! Constant node

if *Eval (class, e), Con (e), Litval (v,e), class (f, "lit")

-> Value (class, f[v], e);

! Application node: Analysis rule

if *Eval (class, e), Appl (e), Left (x,e), Right (y,e)

-> Eval (class, x) , Eval (class, y)

;

! Application node: Synthesis rules

if *Value (class, u,x), *Value (class, v,y),

Appl (e), Op (n,e), Left (x,e), Right (y,e), class (f, n)

-> Check (class, f[u,v], e);

if *Check (class, w, e), ^Errorcode [w]

-> Value (class, w, e);

if *Check (class, w, e), IsErrorcode [w],

Explanation (s, w), *CurrentNode (q)

-> displayn {s}, CurrentNode (e)

>> }•

! activate the rules

act {EvalUnparseRules}.

CurrentNode (Nil).

displayn {"Evaluator/Unparser loaded"}.

-27-
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